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Open-top axially swept light-sheet microscopy
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Abstract: Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique
for high throughput cellular imaging of large tissue specimens including optically cleared tissues
by having the entire optical setup below the sample stage. Current OT-LSM systems had
relatively low axial resolutions by using weakly focused light sheets to cover the imaging field
of view (FOV). In this report, open-top axially swept LSM (OTAS-LSM) was developed for
high-throughput cellular imaging with improved axial resolution. OTAS-LSM swept a tightly
focused excitation light sheet across the imaging FOV using an electro tunable lens (ETL) and
collected emission light at the focus of the light sheet with a camera in the rolling shutter mode.
OTAS-LSM was developed by using air objective lenses and a liquid prism and it had on-axis
optical aberration associated with the mismatch of refractive indices between air and immersion
medium. The effects of optical aberration were analyzed by both simulation and experiment, and
the image resolutions were under 1.6µm in all directions. The newly developed OTAS-LSM was
applied to the imaging of optically cleared mouse brain and small intestine, and it demonstrated
the single-cell resolution imaging of neuronal networks. OTAS-LSM might be useful for the
high-throughput cellular examination of optically cleared large tissues.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High-speed optical microscopy methods, which can do the cell-level imaging of large tissue
specimens, are useful for both the biological study of neuronal networks and the cellular
examination of clinical tissues together with optical clearing. There are various optical microscopy
techniques compatible with large tissue imaging. Light-sheet microscopy (LSM) was originally
developed for the high-speed 3D imaging of tiny model organisms in developmental biology with
minimal photo-damage by introducing excitation light as a sheet from the side and conducting
planar imaging from the top or bottom [1–3]. LSM was later applied to the imaging of the larger
samples such as optically cleared mouse brain [4]. However, LSM showed limited performance
with large samples due to the degradation of image resolution with the increase of sample size.
To overcome the limitation of LSM, axially swept LSM (AS-LSM) methods were developed
[5–9]. AS-LSM used a tightly focused light sheet and axially swept the light sheet across the
imaging FOV. Emission light generated at the focus was collected by imaging cameras in the
rolling shutter mode. AS-LSM methods have been applied to the imaging of large samples
such as mouse brain [7,9], bone marrow [7], spinal cord [8], and chicken embryo [9]. Another
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LSM method, which shifted the light sheet axially instead of linear sweeping, was developed
[10]. However, these LSM methods still had limitations on sample size due to the need for
accessing the sample from multiple sides. Thus, various LSM methods were developed in
different optical configurations for large sample imaging [11–13]. LS theta microscopy (LSTM)
placed both the illumination and imaging arms on one side so that large samples could be placed
on the other side and imaged without size limitation [11]. LSTM had the illumination arm at
an oblique theta angle (less than 90°) and the imaging arm normal to the sample surface, and
the light sheet scanned in the imaging plane. LSTM had relatively high image resolutions in
the lateral direction and could use the full working distance of the objective lens. However, the
current LSTM was in the upright configuration and had limitations in handling and imaging
the samples. Unlike AS-LSM, the camera rolling shutter in LSTM was synchronized with a
small portion of the scanning light sheet and the fluorescence collection was reduced. Swept
confocally-aligned planar excitation (SCAPE) microscopy was another LS microscopy without
sample size limitation [12,13]. SCAPE microscopy was a single objective lens system and did
imaging via the oblique light sheet illumination and emission light collection along the light sheet.
The tilted image plane was corrected by using an additional relay imaging arm in the matched
tilted angle. Although SCAPE microscopy was simplified by using the single objective lens, the
image resolution varied depending on the spatial location and it could be sensitive to optical
aberrations. Various single objective lens based LSM techniques other than SCAPE microscopy
have been developed [14–16]. Open-top LSM (OT-LSM) was the next LSM without sample
size limitation by having separate illumination and imaging arms on one side in the inverted
configuration [17–24]. The two arms were oriented at 45° with respect to the sample surface:
the illumination arm at +45° and the imaging arm at -45°. OT-LSM did the planar imaging
continuously with sample translation and was good for high throughput imaging. The oblique
illumination and imaging with respect to the sample surface in the OT-LSM required interfacing
devices such as the water prism [17,18], solid immersion lens (SIL) [19–22], and solid immersion
meniscus lens (SIMlens) [23,24] for the normal incidence of illumination and emission light to
the medium and the minimization of optical aberration associated with the oblique incidence of
light on the interface. Standard aberration correction using the wavefront sensing and correction,
and the use of an immersion objective lens without the interfacing device were implemented
for high-resolution imaging [18,23]. Although the lateral resolution was improved by various
methods, the axial resolution remained at approximately 4µm by using the weakly focused light
sheet to cover the entire FOV in focus.

Here, we present open-top axially swept light-sheet microscopy (OTAS-LSM) for high-
throughput cellular imaging of optically cleared tissues with improved axial resolution. OTAS-
LSM used an electro-tunable lens (ETL) to sweep the excitation light sheet across the FOV
and collected emission light from the sample by using a camera in the rolling shutter mode.
The current OTAS-LSM was developed using air objective lenses in both the illumination and
imaging arms and a liquid prism for the normal incidence of light onto the immersion medium
and had on-axis optical aberration. The effect of aberration on image resolution was analyzed by
both simulation and experiment. After the characterization of image resolution, OTAS-LSM
was applied to the optically cleared mouse brain and small intestine tissues to demonstrate its
high-throughput cellular imaging capability.

2. Method

2.1. System configuration of OTAS-LSM

OTAS-LSM was designed based on the configuration of water-prism OT-LSM. An ETL (EL-16-
40-TC-VIS-5D-M27, Optotune) was included in the illumination arm for the axial sweeping of
an excitation light sheet, and emission light from the sample was collected at an sCMOS camera
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(ORCA-Flash4.0 V3 Digital CMOS camera, Hamamatsu) in the rolling shutter mode. OTAS-
LSM used 10x air objective lenses (MY10X-803, NA 0.28, Mitutoyo) in both the illumination
and imaging arms, which were located below the sample holder and oriented at +45° and -45°
with respect to the sample surface. OTAS-LSM had the custom liquid prism filled with refractive
index (RI) matching solution (C match, 1.46 RI, Crayon Technologies, Korea) for the normal
light incidence onto the clearing solution.

Schematics of the OTAS-LSM system are shown in Fig. 1. A simplified optical configuration
of the system, a ray tracing of the excitation light sheet in the illumination arm in two different
cross-sections of x-z and y-z planes, and a detailed schematic of the liquid prism are shown.
Excitation light was from either 488nm or 532nm CW lasers (Sapphire 488 LP-100, Coherent;
LSR532NL-PS-II, JOLOOYO) and was delivered to the system via fiber coupling (SM1FC,
Thorlabs; P1-460Y-FC-1, Thorlabs; HPUCO-23-532-sm-4.5as, Oz Optics). Excitation light from
the fiber was collimated by a lens (L1, AC254-040-A, Thorlabs). The collimated excitation
beam was converted to a sheet beam by a cylindrical lens (LJ1695RM-A, Thorlabs). The sheet
beam was relayed to the sample by using two lens pairs of L2 (AC254-100-A, Thorlabs) and L3
(AC254-200-A, Thorlabs), and L4 (AC254-150-A, Thorlabs) and the objective lens. The ETL
was placed between the first lens pair (L2 and L3) to control the collimation of sheet beam in
the Fourier plane and to change the axial position of the sheet beam in the sample. The width
of excitation sheet beam before the objective lens was approximately the same size as the back
aperture of the objective lens to generate the light sheet beam with the full numerical aperture
(NA) of the objective lens (0.28NA). The light sheet after the objective lens was designed to be
approximately 2.1mm wide and 0.8µm thick at the beam waist in full width at half maximum
(FWHM), and the focus of light sheet was 25µm long. Excitation light from the air objective
lens entered the sample through the liquid prism. The liquid prism formed the interface of RI
matching solution for the normal incidence of excitation light.

Excitation light passed through the RI matching solution in the liquid prism, a quartz coverslip
(Round quartz coverslip, Ted Pella) at the bottom of the sample holder, and then got focused in
the sample immersed in the RI matching solution. The quartz coverslip was used owing to its
matched RI (1.46) with the RI matching solution. Emission light generated in the sample by the
excitation light sheet was collected at the imaging arm, oriented orthogonally with respect to the
illumination arm. Emission light in the sample passed through the sample holder and the liquid
prism and was collected by the other air objective lens. After the objective lens, emission light
passed through an emission filter (ET525LP and ET542LP, Chroma) and a camera lens (A17 AF
70-300mm F4-5.6 Di LD MACRO 1:2, Tamron) and then was collected at the sCMOS camera.
The camera lens worked as a variable tube lens with adjustable focal length from 180mm to
300mm. The sCMOS camera collected emission light in the rolling shutter mode. The speed of
the rolling shutter and the exposure time of the camera were adjusted to be matched with the
sweeping speed of excitation light sheet in the sample for confocal gating. The collected image
data was transferred to a data acquisition computer via a frame grabber (Firebird camera link
frame grabber, Active silicon). A motorized sample stage (MS-2000 FLAT-TOP XY automated
stage, ASI) was used to translate the specimen between each frame. The planar imaging of the
specimen at the oblique angle with respect to the sample surface was conducted synchronously
with the stepwise sample translation.

The custom liquid prism was used in the OTAS-LSM. The liquid prism was in the shape of a
right-angled prism made of aluminum, and regular coverslips were glued onto the right-angled
sides as windows. Its size was 8.5mm long on the right-angled side. The liquid prism held the RI
matching solution. The imaging FOV was approximately 1mm × 1mm with 2048 × 2048 pixels,
and the lateral resolution was approximately 0.8µm without aberration. Since the illumination
light sheet was oriented at 45° to the sample surface, the 1mm × 1mm FOV corresponded to
0.67mm × 1mm in the depth and width axes. For the axial scanning of light sheets, various
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Fig. 1. Schematics of OTAS-LSM. (a) An overall schematic of OTAS-LSM, (b) A detail
optical configuration of the illumination arm, (c) A detail schematic of the sample interface.

actuation methods have been implemented [7]. The ETL was used in the current system for the
simple optical configuration and a high imaging speed up to 30 fps. The ETL is known to induce
optical aberration at some level due to the geometric constraint of the lens surface. However, the
aberration effect might be negligible in the current system because the target resolution was not
high. A custom LabView program was developed to control the imaging process. The program
generated an analog voltage output signal to control the ETL driver, and a digital trigger output
signal to initiate the rolling shutter of the sCMOS camera, and a digital output signal to move the
microscope stage. The analog voltage signal for the ETL was in a Sawtooth waveform consisting
of a linear ramp section (25ms) and a return and rest section (8ms). The return and rest section
was to stabilize the ETL before the next scan. The Sawtooth waveform was 33ms in total and
repeated during the imaging.

2.2. System characterization by aberration simulation and measurement

The current OTAS-LSM design had on-axis optical aberration by using the air objective lenses
and the liquid prism. The refractive index mismatch of the air and the RI matching solution
in the light path caused the aberration. The aberration was analyzed by both simulation and
experiment. All the analysis and processing were performed using MATLAB (Mathworks Inc,
Natick, Massachusetts). A custom MATLAB code was developed for the simulation and a
simple ray tracing method was used in the analysis. Light rays, which launched in parallel to
the optical axis before the back aperture of the objective lens, experienced multiple refractions
by passing through the layers of different RIs including the air, coverslip, RI matching solution
until arriving at a point (z) in the optical axis. Path length of the ray to the point in the optical
axis was calculated by adding individual path length segments multiplied with the corresponding
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RIs. Path length differences (PLDs) among the rays at different radial positions in the plane of
objective back aperture (rap) were obtained. Light intensity at the point in the optical axis was
calculated by combining the rays. The geometrical coordinate (z=0) was set at the focus of the
light rays in the aberration-free condition. The axial location of the maximum intensity was
found, and it was set to be the focus in the aberration condition. The PLDs among the rays to
the focus were analyzed by using Zernike polynomials. Dominant Zernike coefficients in the
current system were ones of defocus and spherical aberration. The obtained spherical aberration
coefficient was used to construct the point spread function (PSF) in the aberration condition.

Fig. 2. A ray diagram for the aberration analysis of OTAS-LSM. The upper half is the
ideal case without RI mismatch, and the lower half is the actual case where light rays travel
through the layers of different RIs. A ray launched parallel to the optical axis experienced
multiple refractions by going through the layers of different RIs. Path length of the ray was
calculated by adding up the individual length segments multiplied with the corresponding
RIs.

The imaging resolution was experimentally measured by imaging fluorescent microspheres
(0.5 µm in diameter) embedded in the agarose and RI matching solution mixture. The intensity
profiles of the microsphere images were obtained and fitted to the Gaussian function to analyze
full width at half maximum intensity (FWHM). More than 10 microsphere images were analyzed,
and the average FWHM values were obtained.

2.3. Sample preparation of optically cleared tissues and OTAS-LSM imaging

After the characterization, OTAS-LSM was applied to the imaging of optically cleared tissues
including the brain slices of Thy1-eYFP mice and the small intestines of ChAT-Cre Tomato
knock-in mice, ex vivo. All animal procedures in this study were approved by the Institutional
Animal Care and Use Committee (POSTECH-2019-0061). In the mouse brain sample preparation,
mice were euthanzed by injection with a zoletil and rompun mixture before intracardiac perfusion
and then perfused with 20ml of PBS and 20ml 4% paraformaldehyde (PFA) using a peristaltic
pump. The fixed mouse brain was sliced coronally in 1 mm thickness. The brain slices were
incubated in the RI matching solution at 36°C for 2 hours for the optical clearing. The RI
matching solution increased tissue transparency by matching the RI of the fixed brain tissue. In
the small intestine case, mice were euthanized by the same method above and the small intestine
tissues were extracted and excised. The extracted tissues were incubated in PFA solution for 24
hours and then in the RI matching solution at 36 °C for 6 hours.

The optically cleared tissue specimens were mounted in the sample holder of OTAS-LSM and
imaged in 3D with the sample translation in both the x and y directions. The tissue specimens
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were imaged in the unit of long image strips which were generated with the translation in the x
direction in the step size of 1µm. In the case of mouse brain slice, 12 image strips in total were
acquired to cover the entire area. Total imaging time was approximately 1 hour (67 minutes).
The acquired image data was processed for 3D reconstruction. The raw image data was sheared
at 45° to the sample surface, and an image processing algorithm was developed to transform the
image data in the xyz coordinate. Before the transformation, the raw images were enhanced by
using Richardson–Lucy deconvolution method. An aberrated system PSF, which was generated
computationally from the aberration simulation, was used as an input in the deconvolution. The
deconvolution was iterated for 10 times. The enhanced image data was used in the transformation.
A 3D matrix with a fine pixel spacing, which was compatible with the spacing in the sheared
image, was created and filled with the image data in the correct coordinate. The matrix still
had empty pixels owing to the fine spacing and the empty pixels were filled by interpolating
the intensities of neighboring pixels with the consideration of image PSF shape. After all the
pixels were filled, the matrix was resized with the proper shrinkage and aspect ratios. Planar
images in the en-face (xy) and cross-sectional (xz) planes could be accessed. Each image strip
became 1mm × 0.67mm in the cross-section (width × height) after the transformation. The
image strips were joined manually by estimating the overlap and relative coordinates in a 3D
rendering software. The final reconstructed volumetric image was 11.4mm × 8.1mm × 0.67mm
in width × height × thickness. In the case of mouse small intestine specimens, 8 image strips
were acquired in total. The imaging time was approximately 30 minutes. The acquired image
data was processed in the same ways described above. The reconstructed volumetric image was
approximately 8mm × 4mm × 0.67mm in width × height × thickness.

2.4. Confocal microscopy imaging for comparison with OTAS-LSM

OTAS-LSM was compared with confocal microscopy in the mouse brain. Confocal imaging
was conducted by using a commercial system (SP-5, Leica). A multi-immersion 20x objective
lens (HC PL Apo 20x/0.7 Imm, Leica) was used for the imaging in the RI matching solution.
The theoretical image resolution was 0.27µm and 1.83µm in the transverse and axial directions,
respectively. The imaging field of view (FOV) was 258µm × 258µm consisting of 1024 × 1024
pixels. Volumetric images were acquired with the axial step size of 1µm and the imaging speed
of 2 frames/s. The imaging time for 1mm3 volume was approximately 1 hr.

3. Results

3.1. Aberration analysis of OTAS-LSM

The results of image resolution analysis in OTAS-LSM are shown in Fig. 2. A schematic
showing the illumination and imaging light paths and the geometrical coordinates are shown in
Fig. 3(a). The simulation and experiment results are shown in Fig. 3(b) and 3(c), respectively.
In the simulation, the changes of excitation light sheet, imaging PSF, and system PSF by the
aberration were analyzed. The excitation light sheet, which was 0.73 µm thick in FWHM in
the aberration-free condition, was degraded to 1.00 µm with the aberration. The imaging PSF,
which was 0.79 µm in FWHM in the aberration-free condition, was degraded to 1.06 µm with the
aberration. The system PSF could be obtained by multiplying the axially swept illumination light
sheet and the imaging PSF that crossed each other just like those in the schematic. The results in
both the aberration-free and aberration conditions are shown in Fig. 3(b). The system resolutions,
which were 1.14 µm in the x-z plane and 0.79 µm in the y axis in the aberration-free condition,
were degraded to 1.50 µm, 1.06 µm with the aberration, respectively. The image resolution of the
OTAS-LSM was degraded to approximately 131% of the theoretical values.

In the experiment, the PSF of microspheres was measured to be 1.60± 0.17 µm and
1.58± 0.15 µm in FWHM in the x-z plane and 1.49± 0.04 µm in the y axis, respectively.
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Fig. 3. Resolution analysis in both simulation and experiment. (a) A schematic showing the
excitation light sheet, emission light path, and the geometrical coordinates (b) Simulation
results of excitation light sheet, detection point spread function (PSF), and system PSF
in both the aberration-free and aberration conditions. (c) Experimental results showing
representative images of a 0.5 µm fluorescent microsphere and intensity profiles.

The measured image resolutions were 106.6% (x), 105.3% (z), and 140.5% (y) of the simulation
results with the aberration, and approximately 140% (x, z) and 188.6% (y) of the aberration-free
theoretical results. The actual resolutions were expected to be smaller than the measurement
results, which had additional pixelation errors of the camera whose pixel spacing was 0.46 µm.
The analysis concluded that the image resolutions of the OTAS-LSM system were 1 to 2 µm in
both the simulation and experiments and applicable for single-cell resolution imaging.

3.2. OTAS-LMS imaging of optically cleared mouse brain and mouse small intestine

After the system characterization, OTAS-LSM was applied to optically cleared tissues including
the mouse brain and small intestine for the cell-level visualization of neuronal networks. Thy1-
eYFP mice expressing eYFP in motor and sensory neurons were used for the imaging of neural
networks in the brain. ChAT-Cre-tdTomato knock-in mice expressing tdTomato fluorescent
protein in the cholinergic innervation and nonneuronal acetylcholine-synthesizing cells in the
periphery were used for the imaging of enteric nervous system in the small intestine [25].
OTAS-LSM images of the mouse brain slice are shown in Fig. 4. An image of the entire brain
slice and magnified images in the several regions of interest (ROIs) are shown. These images
were volumetric images with depth color coding. The gross image in Fig. 4(a) was color coded
in the depth range from 0µm to 200µm deep from the surface, and the magnified images in
Fig. 4(b-d) were coded in the range from 0µm to 100µm deep from the surface. The image of
entire mouse brain slice showed a gross neural network in the mouse brain: sparse network in
the cerebral cortex and dense network in the hippocampus. The magnified images in 3 different
mouse brain ROIs showed complex neural networks at the single-cell level. The magnified
image in the cerebral cortex in Fig. 4(b) showed pyramidal cells with apical dendrites extending
upward towards the cortical surface. The apical dendrites branched out several times in the
extension. The image in the CA1 region of the hippocampus in Fig. 4(c) showed pyramidal cells
with apical dendrites arising from the soma in the stratum pyramidale and extending down to
stratum radiatum and lacunosum-moleculare. The magnified image in the thalamus in Fig. 4(d)
showed nerve fibers projecting out to the cerebral cortex. Individual nerve fibers were resolved.
OTAS-LSM visualized the neural network of the mouse brain at the resolution of individual
neurons.
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Fig. 4. OTAS-LSM images of an optically cleared Thy1-eYFP mouse brain. (a) A large
sectional image of the brain slice with depth color coding from 0 to 200µm. (b-d) Magnified
images of the cerebral cortex, hippocampus, and thalamus with depth color coding from 0 to
100µm, respectively. Scale bars: 1mm in (a), 100µm in (b-d).

OTAS-LSM images of the enteric nervous system (ENS) in the mouse small intestine are
shown in Fig. 5. A 3D image in the large FOV and three magnified images in the respective ROIs
are shown in Fig. 5(a) and 5(b-c), respectively. The large FOV image was presented in depth
color coding, and the magnified images were presented as the maximum intensity projection
(MIP) of the 3D image in specific depth ranges. The large FOV image showed the gross structure
of ENS. Neuronal networks in different morphologies or structures appeared at different depth
ranges. The magnified images showed the myenteric plexus (0 – 20µm), deep muscular plexus.
(20 – 30µm), and submucosal plexus (30 – 40µm).

3.3. Comparison of OTAS-LSM with confocal microscopy in the mouse brain

OTAS-LSM was compared with confocal microscopy (CM) in the imaging of mouse brain, and
the results are in Fig. 6. Both the OTAS-LSM and CM images in two different regions of the
mouse brain, the cerebral cortex (Fig. 6(a) and (b)) and hippocampus (Fig. 6(c) and (d)), are
shown. Both OTAS-LSM and CM images were in the same FOV of 260µm × 260µm. CM
visualized fine cellular structures down to thin dendrites (Fig. 6(b) and (d)) with the higher image
resolution compared to those of OTAS-LSM. However, OTAS-LSM could resolve individual
neurons at the modest image resolution of 1-2µm (Fig. 6(a) and (c)). In terms of imaging
throughput, OTAS-LSM could image faster than CM proportionally to the image resolution. CM
needed extra time for switching the imaging sections for large sectional imaging: approximately
1s per switching. On the other hand, OTAS-LSM could do the 3D imaging continuously without
the need of extra time for the switching. OTAS-LSM had an advantage for the high throughput
visualization of gross cellular structure of the optically cleared tissues.
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Fig. 5. OTAS-LSM images of an optical cleared small intestine of the ChAT-Cre-tdTomato
knock-in mouse. (a) A large sectional image with depth color coding from 0 to 300µm. (b-d)
Magnified images of the region of interests (ROIs) marked in the large sectional image and
processed as maximum intensity projection (MIP). (b) An MIP image of ROI-1 showing
the myenteric plexus from 0 to 20µm from the surface. (c) and (d) are MIP images of the
deep muscular plexus from 20 to 30µm in depth and submucosal plexus from 30 to 40µm in
depth. Scale bars are 1mm in (a) and 100µm in (b-d).

Fig. 6. Comparison between OTAS-LSM and confocal microscopy (CM) in the visualization
of neuronal network in the brain. (a, b) MIP OTAS-LSM and CM images of the cerebral
cortex, respectively. (c, d) MIP OTAS-LSM and CM images of the hippocampus. Scale
bars: 100µm.
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4. Discussion

OTAS-LSM was developed for the high throughput imaging of optically cleared tissues with
improved axial resolution. The current OTAS-LSM was based on the water-prism OT-LSM
design. OTAS-LSM implemented the axial sweeping of the excitation light sheet by using
the ETL. The emission light generated at the focus of light sheet was collected confocally by
synchronizing the rolling shutter in the imaging camera with the excitation light sheet. The
imaging FOV was approximately 1mm × 1mm in the oblique imaging plane, and the imaging
speed was 30 frames/s. Although the current OTAS-LSM had the inherent on-axis optical
aberration by using the air objective lenses and the liquid prism, the image resolution was 1-2µm
in both the axial and transverse directions. In the imaging of optically cleared mouse brain and
small intestine tissues, OTAS-LSM demonstrated its ability of visualizing the neural network in
the mouse brain and the ENS in the small intestine in the single-cell level.

The current OTAS-LSM had several limitations including the imaging depth range, the image
resolution, and the imaging speed. The current system could image the sample down to less than
1 mm deep from the surface, because the sample holder could not change the axial position of
the sample with respect to the illumination and imaging paths. A new sample holder, which
could axially translate the sample, would increase the imaging depth range [23]. The new sample
holder together and a new immersion chamber are currently under development. The current
system had the on-axis optical aberration, and the aberration would be worsened with the imaging
depth. The resolution could be improved by adapting aberration correction methods. Wavefront
correction devices such as a deformable mirror (DM) or a spatial light modulator (SLM) could
be incorporated [18,26,27]. The current imaging speed was up to 30 frames/s, limited by the
ETL. Other devices such as deformable mirrors, which have the faster response, could be used
both to axially sweep the light sheet and to correct aberration. The current OTAS-LSM was
configured with single excitation lasers at a time. Multi-color imaging would be implemented
in the future by using multiple excitation lasers. Light sheets of different wavelengths might
get focused at different axial locations due to chromatic aberration from the ETL and the liquid
prism in the illumination path. The focal position of different wavelength light sheets would need
to be measured to adjust the ETL waveform amplitude. The current OTAS-LSM might not be
sensitive to the focus mismatch of different wavelength light sheets, because the excitation focus
was approximately 25 µm long.

5. Conclusion

OTAS-LSM was developed for the high-throughput cellular imaging of optically cleared large
tissues at the improved axial resolution. OTAS-LSM was implemented by using an ETL for
the axial sweeping, and air objective lenses and the liquid prism for illumination and imaging.
The image resolution of OTAS-LSM was 1 to 2 µm with some degradation associated with the
on-axis optical aberration. The performance of OTAS-LSM was verified in the imaging of the
optically cleared mouse brain and small intestine and it could visualize neuronal network at
the cellular level. OTAS-LSM might be useful for the cellular examination of optically cleared
tissues by providing cellular information at high throughputs.
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